
The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ model

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-178
ID032224 Non-Confidential

B1.1 About the Application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support application
execution under an operating system, or higher level of system software. However, some knowledge of the system
information is needed to put the Application level programmers' model into context.

Depending on the implementation choices, the architecture supports multiple levels of execution privilege,
indicated by different Exception levels that number upwards from EL0 to EL3. EL0 corresponds to the lowest
privilege level and is often described as unprivileged. The Application level programmers’ model is the
programmers’ model for software executing at EL0. For more information, see Exception levels.

System software determines the Exception level, and therefore the level of privilege, at which software runs. When
an operating system supports execution at both EL1 and EL0, an application usually runs unprivileged at EL0. This:

• Permits the operating system to allocate system resources to an application in a unique or shared manner.

• Provides a degree of protection from other processes, and so helps protect the operating system from
malfunctioning software.

This chapter indicates where some system level understanding is necessary, and where relevant it gives a reference
to the system level description.

Execution at any Exception level above EL0 is often referred to as privileged execution.

For more information on the system level view of the architecture refer to Chapter D1 The AArch64 System Level
Programmers’ Model.

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-179
ID032224 Non-Confidential

B1.2 Registers in AArch64 Execution state

The following registers are visible at EL0 using AArch64:

R0-R30 31 general-purpose registers, R0 to R30. Each can be accessed as:

• A 64-bit general-purpose register named X0 to X30.

• A 32-bit general-purpose register named W0 to W30.

Figure B1-1 General-purpose register naming

The X30 general-purpose register is used as the procedure call link register.

SP A 64-bit dedicated Stack Pointer register. The least significant 32 bits of the stack pointer can be
accessed using the register name WSP.

The use of SP as an operand in an instruction, indicates the use of the current stack pointer.

Note

Stack pointer alignment to a 16-byte boundary is configurable at EL1. For more information, see
the Procedure Call Standard for the Arm 64-bit Architecture.

PC A 64-bit Program Counter holding the address of the current instruction.

Software cannot write directly to the PC. It can be updated only on a branch, exception entry or
exception return.

Note

Attempting to execute an A64 instruction that is not word-aligned generates a PC alignment fault,
see PC alignment checking.

V0-V31 32 SIMD&FP registers, V0 to V31. Each can be accessed as:

• A 128-bit register named Q0 to Q31.

• A 64-bit register named D0 to D31.

• A 32-bit register named S0 to S31.

• A 16-bit register named H0 to H31.

• An 8-bit register named B0 to B31.

• A 128-bit vector of elements. See SIMD vectors in AArch64 state.

• A 64-bit vector of elements. See SIMD vectors in AArch64 state.

Where the number of bits described by a register name does not occupy an entire SIMD&FP
register, it refers to the least significant bits. See Figure B1-2.

For more information about data types and vector formats, see Supported data types.

63 32 31 0

Rn

Wn

Xn

The AArch64 Application Level Programmers’ Model
B1.3 Process state, PSTATE

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-184
ID032224 Non-Confidential

B1.3 Process state, PSTATE

Process state, or PSTATE, is an abstraction of process state information. All of the instruction sets provide
instructions that operate on elements of PSTATE.

For the system level view of PSTATE, see Process state, PSTATE in Chapter D1.

The following PSTATE information is accessible at EL0:

The Condition flags

Flag-setting instructions set these. They are:

N Negative Condition flag. If the result of the instruction is regarded as a two's
complement signed integer, the PE sets this to:

• 1 if the result is negative.

• 0 if the result is positive or zero.

Z Zero Condition flag. Set to:

• 1 if the result of the instruction is zero.

• 0 otherwise.

A result of zero often indicates an equal result from a comparison.

C Carry Condition flag. Set to:

• 1 if the instruction results in a carry condition, for example an unsigned overflow
that is the result of an addition.

• 0 otherwise.

V Overflow Condition flag. Set to:

• 1 if the instruction results in an overflow condition, for example a signed
overflow that is the result of an addition.

• 0 otherwise.

Conditional instructions test the N, Z, C and V Condition flags, combining them with the Condition
code for the instruction to determine whether the instruction must be executed. In this way,
execution of the instruction is conditional on the result of a previous operation. For more
information about conditional execution, see Condition flags and related instructions.

The exception masking bits

D Debug exception mask bit. When EL0 is enabled to modify the mask bits, this bit is
visible and can be modified. However, this bit is architecturally ignored at EL0.

A SError interrupt mask bit.

I IRQ interrupt mask bit.

F FIQ interrupt mask bit.

For each bit, the values are:

0 Exception not masked.

1 Exception masked.

Access at EL0 using AArch64 state depends on SCTLR_EL1.UMA.

The A64 Instruction Set
C1.2 Structure of the A64 assembler language

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-322
ID032224 Non-Confidential

C1.2.3 Instruction Mnemonics

The A64 assembly language overloads instruction mnemonics and distinguishes between the different forms of an
instruction based on the operand types. For example, the following ADD instructions all have different opcodes.
However, the programmer must remember only one mnemonic, as the assembler automatically chooses the correct
opcode based on the operands. The disassembler follows the same procedure in reverse.

Example C1-1 ADD instructions with different opcodes

ADD W0, W1, W2 // add 32-bit register
ADD X0, X1, X2 // add 64-bit register
ADD X0, X1, W2, SXTW // add 64-bit extended register
ADD X0, X1, #42 // add 64-bit immediate

C1.2.4 Condition code

The A64 ISA has some instructions that set Condition flags or test Condition codes or both. For information about
instructions that set the Condition flags or use the condition mnemonics, see Condition flags and related
instructions.

Table C1-1 shows the available Condition codes.

Table C1-1 Condition codes

cond Mnemonic Meaning (integer) Meaning (floating-point)a Condition flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal or unordered Z == 0

0010 CS or HS Carry set Greater than, equal, or unordered C == 1

0011 CC or LO Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal, or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Ordered V == 0

1000 HI Unsigned higher Greater than, or unordered C ==1 && Z == 0

1001 LS Unsigned lower or same Less than or equal !(C ==1 && Z ==0)

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than, or unordered N != V

1100 GT Signed greater than Greater than Z == 0 && N == V

1101 LE Signed less than or equal Less than, equal, or unordered !(Z == 0 && N == V)

1110 AL Always Always Any

1111 NVb Always Always Any

a. Unordered means at least one NaN operand.

b. The Condition code NV exists only to provide a valid disassembly of the 0b1111 encoding, otherwise its behavior is identical
to AL.

The A64 Instruction Set
C1.2 Structure of the A64 assembler language

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-323
ID032224 Non-Confidential

C1.2.5 SVE Condition code aliases

The SVE assembler syntax defines an alternative set of SVE condition code aliases for use with AArch64
conditional instructions, as follows:

Table C1-2 shows the available SVE Condition code aliases.

C1.2.6 Register names

See:

• General-purpose register file and zero register and stack pointer.

• Advanced SIMD and floating-point register file.

• Advanced SIMD and floating-point scalar register names.

• SIMD vector register names.

• SIMD vector element names.

• For SVE register names, see Z0-Z31. P0-P15, and FFR, First Fault Register.

• For SME ZA storage, see ZA array vector access and ZA tile access.

• For SME2 ZT0 storage, see ZT0.

C1.2.6.1 General-purpose register file and zero register and stack pointer

The 31 general-purpose registers in the general-purpose register file are named R0-R30 and encoded in the
instruction register fields with values 0-30. In a general-purpose register field the value 31 represents either the
current stack pointer or the zero register, depending on the instruction and the operand position.

When the registers are used in a specific instruction variant, they must be qualified to indicate the operand data size,
32 bits or 64 bits, and the data size of the instruction.

Table C1-2 SVE Condition codes

cond Mnemonic
SVE
alias

Meaning Condition flags

0000 EQ NONE All Active elements were FALSE or there were no Active elements. Z == 1

0001 NE ANY An Active element was TRUE. Z == 0

0010 CS or HS NLAST The Last active element was FALSE or there were no Active elements. C == 1

0011 CC or LO LAST The Last active element was TRUE. C == 0

0100 MI FIRST The First active element was TRUE. N == 1

0101 PL NRFST The First active element was FALSE or there were no Active elements. N == 0

0110 VS - CTERM comparison failed, but end of partition reached. V == 1

0111 VC - CTERM comparison succeeded, or end of partition not reached. V == 0

1000 HI An Active element was TRUE, but the Last active element was FALSE. C ==1 && Z == 0

1001 LS PLAST The Last active element was TRUE, or all Active elements were FALSE,
or there were no Active elements.

C ==0 || Z ==1

1010 GE TCONT CTERM termination condition not detected. N == V

1011 LT TSTOP CTERM termination condition detected. N != V

The A64 Instruction Set
C1.2 Structure of the A64 assembler language

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-324
ID032224 Non-Confidential

When the data size is 32 bits, the lower 32 bits of the register are used and the upper 32 bits are ignored on a read
and cleared to zero on a write.

Table C1-3 shows the qualified names for registers, where n is a register number 0-30.

This list gives more information about the instruction arguments shown in Table C1-3:

• The names Xn and Wn both refer to the same general-purpose register, Rn.

• There is no register named W31 or X31.

• The name SP represents the stack pointer for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as a read or write of the current stack pointer. When instructions
do not interpret this operand encoding as the stack pointer, use of the name SP is an error.

• The name WSP represents the current stack pointer in a 32-bit context.

• The name XZR represents the zero register for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as returning zero when read or discarding the result when written.
When instructions do not interpret this operand encoding as the zero register, use of the name XZR is an error.

• The name WZR represents the zero register in a 32-bit context.

• The architecture does not define a specific name for general-purpose register R30 to reflect its role as the link
register on procedure calls. However, an A64 assembler must always use W30 and X30 for this purpose, and
additional software names might be defined as part of the Procedure Call Standard, see Procedure Call
Standard for the Arm 64-bit Architecture.

C1.2.6.2 Advanced SIMD and floating-point register file

The 32 registers in the Advanced SIMD and floating-point register file, V0-V31, hold floating-point operands for
the scalar floating-point instructions, and both scalar and vector operands for the Advanced SIMD instructions.
When they are used in a specific instruction form, the names must be further qualified to indicate the data shape,
that is the data element size and the number of elements or lanes within the register. A similar requirement is placed
on the general-purpose registers. See General-purpose register file and zero register and stack pointer.

Note

The data type is described by the instruction mnemonics that operate on the data. The data type is not described by
the register name. The data type is the interpretation of bits within each register or vector element, whether these
are integers, floating-point values, polynomials, or cryptographic hashes.

Table C1-3 Naming of general-purpose registers, the zero register, and the stack pointer

 Name Size Encoding Description

Wn 32 bits 0-30 General-purpose register 0-30

Xn 64 bits 0-30 General-purpose register 0-30

WZR 32 bits 31 Zero register

XZR 64 bits 31 Zero register

WSP 32 bits 31 Current stack pointer

SP 64 bits 31 Current stack pointer

The A64 Instruction Set
C1.3 Address generation

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-327
ID032224 Non-Confidential

C1.3 Address generation

The A64 instruction set supports 64-bit virtual addresses (VAs). The valid VA range is determined by the following
factors:

• The size of the implemented virtual address space.

• Memory Management Unit (MMU) configuration settings.

Limits on the VA size mean that the most significant bits of the virtual address do not hold valid address bits. These
unused bits can hold:

• A tag, see Address tagging.

• If FEAT_PAuth is implemented, a Pointer authentication code (PAC), see Pointer authentication.

For more information on memory management and address translation, see Chapter D8 The AArch64 Virtual
Memory System Architecture.

C1.3.1 Register indexed addressing

The A64 instruction set allows a 64-bit index register to be added to the 64-bit base register, with optional scaling
of the index by the access size. Additionally it allows for sign-extension or zero-extension of a 32-bit value within
an index register, followed by optional scaling.

C1.3.2 PC-relative addressing

The A64 instruction set has support for position-independent code and data addressing:

• PC-relative literal loads have an offset range of ± 1MB.

• Process state flag and compare based conditional branches have a range of ± 1MB. Test bit conditional
branches have a restricted range of ± 32KB.

• Unconditional branches, including branch and link, have a range of ± 128MB.

PC-relative load/store operations, and address generation with a range of ± 4GB can be performed using two
instructions.

C1.3.3 Load/store addressing modes

Load/store addressing modes in the A64 instruction set require a 64-bit base address from a general-purpose register
X0-X30 or the current stack pointer, SP, with an optional immediate or register offset. Table C1-7 shows the
assembler syntax for the complete set of load/store addressing modes.

Table C1-7 A64 Load/store addressing modes

Addressing Mode
Offset

Immediate Register Extended Register

Base register only (no offset) [base{, #0}] - -

Base plus offset [base{, #imm}] [base, Xm{, LSL #imm}] [base, Wm, (S|U)XT(X|W) {#imm}]

Pre-indexed [base, #imm]! - -

Post-indexed [base], #imm [base], Xma

a. The post-indexed by register offset mode can be used with the SIMD load/store structure instructions described in
Load/store Advanced SIMD. Otherwise the post-indexed by register offset mode is not available.

-

Literal (PC-relative) label - -

The A64 Instruction Set
C1.3 Address generation

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-328
ID032224 Non-Confidential

Some types of load/store instruction support only a subset of the load/store addressing modes listed in Table C1-7.
Details of the supported modes are as follows:

• Base plus offset addressing means that the address is the value in the 64-bit base register plus an offset.

• Pre-indexed addressing means that the address is the sum of the value in the 64-bit base register and an offset,
and the address is then written back to the base register.

• Post-indexed addressing means that the address is the value in the 64-bit base register, and the sum of the
address and the offset is then written back to the base register.

• Literal addressing means that the address is the value of the 64-bit program counter for this instruction plus
a 19-bit signed word offset. This means that it is a 4 byte aligned address within ±1MB of the address of this
instruction with no offset. Literal addressing can be used only for loads of at least 32 bits and for prefetch
instructions. The PC cannot be referenced using any other addressing modes. The syntax for labels is specific
to individual toolchains.

• An immediate offset can be unsigned or signed, and scaled or unscaled, depending on the type of load/store
instruction. When the immediate offset is scaled it is encoded as a multiple of the transfer size, although the
assembly language always uses a byte offset, and the assembler or disassembler performs the necessary
conversion. The usable byte offsets therefore depend on the type of load/store instruction and the transfer
size.

Table C1-8 shows the offset and the type of load/store instruction.

• A register offset means that the offset is the 64 bits from a general-purpose register, Xm, optionally scaled
by the transfer size, in bytes, if LSL #imm is present and where imm must be equal to log2(transfer_size). The
SXTX extend/shift option is functionally equivalent to LSL, but the LSL option is preferred in source code.

• An extended register offset means that offset is the bottom 32 bits from a general-purpose register Wm,
sign-extended or zero-extended to 64 bits, and then scaled by the transfer size if so indicated by #imm, where
imm must be equal to log2(transfer_size). An assembler must accept Wm or Xm as an extended register
offset, but Wm is preferred for disassembly.

• Generating an address lower than the value in the base register requires a negative signed immediate offset
or a register offset holding a negative value.

• When stack alignment checking is enabled by system software and the base register is the SP, the current
stack pointer must be initially quadword aligned, that is aligned to 16 bytes. Misalignment generates a Stack
Alignment fault. The offset does not have to be a multiple of 16 bytes unless the specific load/store instruction
requires this. SP cannot be used as a register offset.

Table C1-8 Immediate offsets and the type of load/store instruction

Offset bits Sign Scaling Write-Back Load/store type

0 - - - Exclusive/acquire/release

7 Signed Scaled Optional Register pair

9 Signed Unscaled Optional Single register

12 Unsigned Scaled No Single register

The A64 Instruction Set
C1.3 Address generation

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-329
ID032224 Non-Confidential

C1.3.3.1 Address calculation

General-purpose arithmetic instructions can calculate the result of most addressing modes and write the address to
a general-purpose register or, in most cases, to the current stack pointer.

Table C1-9 shows the arithmetic instructions that can compute addressing modes.

Note

• For the 64-bit base plus register offset form, the UXTX mnemonic is an alias for the LSL shift option, but LSL is
preferred for disassembly. Similarly the SXTX extend/shift option is functionally equivalent to the LSL option,
but the LSL option is preferred in source code.

• To calculate a base plus immediate offset the ADD instructions defined in Arithmetic (immediate) accept an
unsigned 12-bit immediate offset, with an optional left shift by 12. This means that a single ADD instruction
cannot support the full range of byte offsets available to a single register load/store with a scaled 12-bit
immediate offset. For example, a quadword LDR effectively has a 16-bit byte offset. To calculate an address
with a byte offset that requires more than 12 bits it is necessary to use two ADD instructions. The following
example shows this:

ADD Xd, base, #(imm & 0xFFF)
ADD Xd, Xd, #(imm>>12), LSL #12

• To calculate a base plus extended register offset, the ADD instructions defined in Arithmetic (extended register)
provide a superset of the addressing mode that also supports sign-extension or zero-extension of a byte or
halfword value with any shift amount between 0 and 4, for example:

ADD Xd, base, Wm, SXTW #3 // Xd = base + (SignExtend(Wm) LSL 3)
ADD Xd, base, Wm, UXTH #4 // Xd = base + (ZeroExtend(Wm<15:0>) LSL 4)

• If the same extended register offset is used by more than one load/store instruction, then, depending on the
implementation, it might be more efficient to calculate the extended and scaled intermediate result just once,
and then reuse it as a simple register offset. The extend and scale calculation can be performed using the SBFIZ
and UBFIZ bitfield instructions defined in Bitfield move, for example:

SBFIZ Xd, Xm, #3, #32 //Xd = “Wm, SXTW #3”
UBFIZ Xd, Xm, #4, #16 //Xd = “Wm, UXTH #4”

Table C1-9 Arithmetic instructions to compute addressing modes

Addressing
Form

Offset

Immediate Register Extended Register

Base register
(no offset)

MOV Xd|SP, base - -

Base plus offset ADD Xd|SP, base, #imm

or

SUB Xd|SP, base, #imm

ADD <Xd|SP>, base, Xm{,LSL#imm} ADD <Xd|SP>, base, Wm,(S|U)XT(W|H|B|X) {#imm}

Pre-indexed - - -

Post-indexed - - -

Literal
(PC-relative)

ADR Xd, label - -

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-339
ID032224 Non-Confidential

C3.1 Branches, Exception generating, and System instructions

This section describes the branch, exception generating, and System instructions. It contains the following
subsections:

• Conditional branch.

• Unconditional branch (immediate).

• Unconditional branch (register).

• Exception generation and return.

• System register instructions.

• System instructions.

• Hint instructions.

• Barriers and CLREX instructions.

• Pointer authentication instructions.

For information about the encoding structure of the instructions in this instruction group, see Branches, Exception
Generating and System instructions.

Note

Software must:

• Use only BLR or BL to perform a nested subroutine call when that subroutine is expected to return to the
immediately following instruction, that is, the instruction with the address of the BLR or BL instruction
incremented by four.

• Use only RET to perform a subroutine return, when that subroutine is expected to have been entered by a BL
or BLR instruction.

• Use only B, BR, or the instructions listed in Table C3-1 to perform a control transfer that is not a subroutine
call or subroutine return described in this Note.

C3.1.1 Conditional branch

Conditional branches change the flow of execution depending on the current state of the Condition flags or the value
in a general-purpose register. See Table C1-1 for a list of the Condition codes that can be used for cond.

Table C3-1 shows the Conditional branch instructions.

Table C3-1 Conditional branch instructions

Mnemonic Instruction
Branch offset range
from the PC

See

B.cond Branch conditionally ±1MB B.cond

BC.cond Branch Consistent conditionally ±1MB BC.cond

CBNZ Compare and branch if nonzero ±1MB CBNZ

CBZ Compare and branch if zero ±1MB CBZ

TBNZ Test bit and branch if nonzero ±32KB TBNZ

TBZ Test bit and branch if zero ±32KB TBZ

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-340
ID032224 Non-Confidential

C3.1.2 Unconditional branch (immediate)

Unconditional branch (immediate) instructions change the flow of execution unconditionally by adding an
immediate offset with a range of ±128MB to the value of the program counter that fetched the instruction. The BL
instruction also writes the address of the sequentially following instruction to general-purpose register, X30.

Table C3-2 shows the Unconditional branch instructions with an immediate branch offset.

C3.1.3 Unconditional branch (register)

Unconditional branch (register) instructions change the flow of execution unconditionally by setting the program
counter to the value in a general-purpose register. The BLR instruction also writes the address of the sequentially
following instruction to general-purpose register X30. The RET instruction behaves identically to BR, but provides an
additional hint to the PE that this is a return from a subroutine. Table C3-3 shows Unconditional branch instructions
that jump directly to an address held in a general-purpose register.

C3.1.4 Exception generation and return

This section describes the following exceptions:

• Exception generating.

• Exception return.

• Debug state.

C3.1.4.1 Exception generating

Table C3-4 shows the Exception generating instructions.

Table C3-2 Unconditional branch instructions (immediate)

Mnemonic Instruction
Immediate branch offset range
from the PC

See

B Branch unconditionally ±128MB B

BL Branch with link ±128MB BL

Table C3-3 Unconditional branch instructions (register)

Mnemonic Instruction See

BLR Branch with link to register BLR

BR Branch to register BR

RET Return from subroutine RET

Table C3-4 Exception generating instructions

Mnemonic Instruction See

BRK Breakpoint Instruction BRK

HLT Halt Instruction HLT

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-341
ID032224 Non-Confidential

C3.1.4.2 Exception return

Table C3-5 shows the Exception return instructions.

C3.1.4.3 Debug state

Table C3-6 shows the Debug state instructions.

C3.1.5 System register instructions

For detailed information about the System register instructions, see Chapter C5 The A64 System Instruction Class.
Table C3-7 shows the System register instructions.

If FEAT_SYSREG128 is implemented, the following instructions are added that allow the PE to move values
between a 128-bit System register and two adjacent 64-bit general-purpose registers:

• MRRS.

• MSRR.

HVC Generate exception targeting Exception level 2 HVC

SMC Generate exception targeting Exception level 3 SMC

SVC Generate exception targeting Exception level 1 SVC

Table C3-5 Exception return instructions

Mnemonic Instruction See

ERET Exception return using current ELR and SPSR ERET

Table C3-6 Debug state instructions

Mnemonic Instruction See

DCPS1 Debug switch to Exception level 1 DCPS1

DCPS2 Debug switch to Exception level 2 DCPS2

DCPS3 Debug switch to Exception level 3 DCPS3

DRPS Debug restore PE state DRPS

Table C3-4 Exception generating instructions (continued)

Mnemonic Instruction See

Table C3-7 System register instructions

Mnemonic Instruction See

MRS Move System register to general-purpose register MRS

MSR Move general-purpose register to System register MSR (register)

Move immediate to PE state field MSR (immediate)

MRRS Move 128-bit System register to two adjacent 64-bit general-purpose registers MRRS

MSRR Move two adjacent 64-bit general-purpose registers to 128-bit System register MSRR

A64 Instruction Set Overview
C3.2 Loads and stores

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-347
ID032224 Non-Confidential

C3.2 Loads and stores

This section describes the load/store instructions. It contains the following subsections:

• Load/store register.

• Load/store register (unscaled offset).

• Load/store pair.

• Load/store non-temporal pair.

• Load/store unprivileged.

• Load-Exclusive/Store-Exclusive.

• Load-Acquire/Store-Release.

• LoadLOAcquire/StoreLORelease.

• Load/store scalar SIMD and floating-point.

• Load/store Advanced SIMD.

• Prefetch memory.

• Atomic instructions.

• Memory Tagging instructions.

• Memory Copy and Memory Set instructions.

The requirements for the alignment of data memory accesses are strict. For more information, see Alignment of data
accesses.

The additional control bits SCTLR_ELx.SA and SCTLR_EL1.SA0 control whether the stack pointer must be
quadword aligned when used as a base register. See SP alignment checking. Using a misaligned stack pointer
generates an SP alignment fault exception.

For information about the encoding structure of the instructions in this instruction group, see Loads and Stores.

Note

In some cases, load/store instructions can lead to CONSTRAINED UNPREDICTABLE behavior. See AArch64
CONSTRAINED UNPREDICTABLE behaviors.

C3.2.1 Load/store register

The load/store register instructions support the following addressing modes:

• Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.

• Base plus a 64-bit register offset, optionally scaled.

• Base plus a 32-bit extended register offset, optionally scaled.

• Pre-indexed by an unscaled 9-bit signed immediate offset.

• Post-indexed by an unscaled 9-bit signed immediate offset.

• PC-relative literal for loads of 32 bits or more.

See also Load/store addressing modes.

A64 Instruction Set Overview
C3.2 Loads and stores

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-348
ID032224 Non-Confidential

If a Load instruction specifies writeback and the register being loaded is also the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs the load using the specified addressing mode and the base register becomes
UNKNOWN. In addition, if an exception occurs during the execution of such an instruction, the base address
might be corrupted so that the instruction cannot be repeated.

If a Store instruction performs a writeback and the register that is stored is also the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs the store to the designated register using the specified addressing mode, but the
value stored is UNKNOWN.

Table C3-17 shows the load/store register instructions.

Table C3-17 Load/store register instructions

Mnemonic Instruction See

LDR Load register (register offset) LDR (register)

Load register (immediate offset) LDR (immediate)

Load register (PC-relative literal) LDR (literal)

LDRB Load byte (register offset) LDRB (register)

Load byte (immediate offset) LDRB (immediate)

LDRSB Load signed byte (register offset) LDRSB (register)

Load signed byte (immediate offset) LDRSB (immediate)

LDRH Load halfword (register offset) LDRH (register)

Load halfword (immediate offset) LDRH (immediate)

LDRSH Load signed halfword (register offset) LDRSH (register)

Load signed halfword (immediate offset) LDRSH (immediate)

LDRSW Load signed word (register offset) LDRSW (register)

Load signed word (immediate offset) LDRSW (immediate)

Load signed word (PC-relative literal) LDRSW (literal)

STR Store register (register offset) STR (register)

Store register (immediate offset) STR (immediate)

STRB Store byte (register offset) STRB (register)

Store byte (immediate offset) STRB (immediate)

STRH Store halfword (register offset) STRH (register)

Store halfword (immediate offset) STRH (immediate)

A64 Instruction Set Overview
C3.2 Loads and stores

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-349
ID032224 Non-Confidential

C3.2.2 Load/store register (unscaled offset)

The load/store register instructions with an unscaled offset support only one addressing mode:

• Base plus an unscaled 9-bit signed immediate offset.

See Load/store addressing modes.

The load/store register (unscaled offset) instructions are required to disambiguate this instruction class from the
load/store register instruction forms that support an addressing mode of base plus a scaled, unsigned 12-bit
immediate offset, because that can represent some offset values in the same range.

The ambiguous immediate offsets are byte offsets that are both:

• In the range 0-255, inclusive.

• Naturally aligned to the access size.

Other byte offsets in the range -256 to 255 inclusive are unambiguous. An assembler program translating a
load/store instruction, for example LDR, is required to encode an unambiguous offset using the unscaled 9-bit offset
form, and to encode an ambiguous offset using the scaled 12-bit offset form. A programmer might force the
generation of the unscaled 9-bit form by using one of the mnemonics in Table C3-18. Arm recommends that a
disassembler outputs all unscaled 9-bit offset forms using one of these mnemonics, but unambiguous offsets can be
output using a load/store single register mnemonic, for example, LDR.

Table C3-18 shows the load/store register instructions with an unscaled offset.

C3.2.3 Load/store pair

The load/store pair instructions support the following addressing modes:

• Base plus a scaled 7-bit signed immediate offset.

• Pre-indexed by a scaled 7-bit signed immediate offset.

• Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/store addressing modes.

If a Load Pair instruction specifies the same register for the two registers that are being loaded, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

Table C3-18 Load/store register (unscaled offset) instructions

Mnemonic Instruction See

LDUR Load register (unscaled offset) LDUR

LDURB Load byte (unscaled offset) LDURB

LDURSB Load signed byte (unscaled offset) LDURSB

LDURH Load halfword (unscaled offset) LDURH

LDURSH Load signed halfword (unscaled offset) LDURSH

LDURSW Load signed word (unscaled offset) LDURSW

STUR Store register (unscaled offset) STUR

STURB Store byte (unscaled offset) STURB

STURH Store halfword (unscaled offset) STURH

A64 Instruction Set Overview
C3.2 Loads and stores

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-350
ID032224 Non-Confidential

• The instruction is treated as a NOP.

• The instruction performs all the loads using the specified addressing mode and the register that is loaded takes
an UNKNOWN value.

If a Load Pair instruction specifies writeback and one of the registers being loaded is also the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all of the loads using the specified addressing mode, and the base register becomes
UNKNOWN. In addition, if an exception occurs during the instruction, the base address might be corrupted so
that the instruction cannot be repeated.

If a Store Pair instruction performs a writeback and one of the registers being stored is also the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all the stores of the registers indicated by the specified addressing mode, but the
value stored for the base register is UNKNOWN.

Table C3-19 shows the load/store pair instructions.

C3.2.4 Load/store non-temporal pair

The load/store non-temporal pair instructions support only one addressing mode:

• Base plus a scaled 7-bit signed immediate offset.

See Load/store addressing modes.

The load/store non-temporal pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to
be gathered to accelerate bulk memory transfers.

In addition, there is an exception to the usual memory ordering rules. If an address dependency exists between two
memory reads, and a Load Non-temporal Pair instruction generated the second read, then in the absence of any other
barrier mechanism to achieve order, the memory accesses can be observed in any order by the other observers within
the shareability domain of the memory addresses being accessed.

If a Load Non-Temporal Pair instruction specifies the same register for the two registers that are being loaded, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all the loads using the specified addressing mode and the register that is loaded takes
an UNKNOWN value.

Table C3-19 Load/store pair instructions

Mnemonic Instruction See

LDP Load Pair LDP

LDPSW Load Pair signed words LDPSW

STP Store Pair STP

A64 Instruction Set Overview
C3.5 Data processing - immediate

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-391
ID032224 Non-Confidential

C3.5 Data processing - immediate

This section describes the instruction groups for data processing with immediate operands. It contains the following
subsections:

• Arithmetic (immediate).

• Integer minimum and maximum (immediate)

• Logical (immediate).

• Move (wide immediate).

• Move (immediate).

• PC-relative address calculation.

• Bitfield move.

• Bitfield insert and extract

• Extract register.

• Shift (immediate).

• Sign-extend and Zero-extend.

For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Immediate.

C3.5.1 Arithmetic (immediate)

The Arithmetic (immediate) instructions accept a 12-bit unsigned immediate value, optionally shifted left by 12 bits.

The Arithmetic (immediate) instructions that do not set Condition flags can read from and write to the current stack
pointer. The flag setting instructions can read from the stack pointer, but they cannot write to it.

Table C3-65 shows the Arithmetic instructions with an immediate offset.

C3.5.2 Integer minimum and maximum (immediate)

The Integer maximum and minimum (immediate) instructions determine the maximum/minimum of the source
register value and immediate.

These instructions are only present when FEAT_CSSC is implemented.

Table C3-65 Arithmetic instructions with an immediate

Mnemonic Instruction See

ADD Add ADD (immediate)

ADDS Add and set flags ADDS (immediate)

SUB Subtract SUB (immediate)

SUBS Subtract and set flags SUBS (immediate)

CMP Compare CMP (immediate)

CMN Compare negative CMN (immediate)

A64 Instruction Set Overview
C3.5 Data processing - immediate

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-392
ID032224 Non-Confidential

Table C3-66 shows the Integer maximum and minimum (immediate) instructions.

C3.5.3 Logical (immediate)

The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern or a 64-bit pattern
viewed as a vector of identical elements of size e = 2, 4, 8, 16, 32 or, 64 bits. Each element contains the same
sub-pattern, that is a single run of 1 to (e - 1) nonzero bits from bit 0 followed by zero bits, then rotated by 0 to (e -
1) bits. This mechanism can generate 5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwise inverse.

Note

Values that consist of only zeros or only ones cannot be described in this way.

The Logical (immediate) instructions that do not set the Condition flags can write to the current stack pointer, for
example to align the stack pointer in a function prologue.

Note

Apart from ANDS and its TST alias, Logical (immediate) instructions do not set the Condition flags. However, the final
results of a bitwise operation can be tested by a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-67 shows the Logical immediate instructions.

C3.5.4 Move (wide immediate)

The Move (wide immediate) instructions insert a 16-bit immediate, or inverted immediate, into a 16-bit aligned
position in the destination register. The value of the other bits in the destination register depends on the variant used.
The optional shift amount can be any multiple of 16 that is smaller than the register size.

Table C3-66 Integer maximum and minimum (immediate) instructions

Mnemonic Instruction See

SMAX Signed Maximum (immediate) SMAX (immediate)

SMIN Signed Minimum (immediate) SMIN (immediate)

UMAX Unsigned Maximum (immediate) UMAX (immediate)

UMIN Unsigned Minimum (immediate) UMIN (immediate)

Table C3-67 Logical immediate instructions

Mnemonic Instruction See

AND Bitwise AND AND (immediate)

ANDS Bitwise AND and set flags ANDS (immediate)

EOR Bitwise exclusive OR EOR (immediate)

ORR Bitwise inclusive OR ORR (immediate)

TST Test bits TST (immediate)

A64 Instruction Set Overview
C3.5 Data processing - immediate

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-393
ID032224 Non-Confidential

Table C3-68 shows the Move (wide immediate) instructions.

C3.5.5 Move (immediate)

The Move (immediate) instructions are aliases for a single MOVZ, MOVN, or ORR (immediate with zero register),
instruction to load an immediate value into the destination register. An assembler must permit a signed or unsigned
immediate, as long as its binary representation can be generated using one of these instructions, and an assembler
error results if the immediate cannot be generated in this way. On disassembly, it is unspecified whether the
immediate is output as a signed or an unsigned value.

If there is a choice between the MOVZ, MOVN, and ORR instruction to encode the immediate, then an assembler must
prefer MOVZ to MOVN, and MOVZ or MOVN to ORR, to ensure reversability. A disassembler must output ORR (immediate with
zero register) MOVZ, and MOVN, as a MOV mnemonic except that the underlying instruction must be used when:

• ORR has an immediate that can be generated by a MOVZ or MOVN instruction.

• A MOVN instruction has an immediate that can be encoded by MOVZ.

• MOVZ #0 or MOVN #0 have a shift amount other than LSL #0.

Table C3-69 shows the Move (immediate) instructions.

C3.5.6 PC-relative address calculation

The ADR instruction adds a signed, 21-bit immediate to the value of the program counter that fetched this instruction,
and then writes the result to a general-purpose register. This permits the calculation of any byte address within
±1MB of the current PC.

The ADRP instruction shifts a signed, 21-bit immediate left by 12 bits, adds it to the value of the program counter with
the bottom 12 bits cleared to zero, and then writes the result to a general-purpose register. This permits the
calculation of the address at a 4KB aligned memory region. In conjunction with an ADD (immediate) instruction, or
a load/store instruction with a 12-bit immediate offset, this allows for the calculation of, or access to, any address
within ±4GB of the current PC.

Note

The term page used in the ADRP description is short-hand for the 4KB memory region, and is not related to the virtual
memory translation granule size.

Table C3-68 Move (wide immediate) instructions

Mnemonic Instruction See

MOVZ Move wide with zero MOVZ

MOVN Move wide with NOT MOVN

MOVK Move wide with keep MOVK

Table C3-69 Move (immediate) instructions

Mnemonic Instruction See

MOV Move (inverted wide immediate) MOV (inverted wide immediate)

Move (wide immediate) MOV (wide immediate)

Move (bitmask immediate) MOV (bitmask immediate)

A64 Instruction Set Overview
C3.5 Data processing - immediate

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-394
ID032224 Non-Confidential

Table C3-70 shows the instructions used for PC-relative address calculations are as follows:

C3.5.7 Bitfield move

The Bitfield move instructions copy a field of constant width from bit 0 in the source register to a constant bit
position in the destination register, or from a constant bit position in the source register to bit 0 in the destination
register. The remaining bits in the destination register are set as follows:

• For BFM, the remaining bits are unchanged.

• For UBFM the lower bits, if any, and upper bits, if any, are set to zero.

• For SBFM, the lower bits, if any, are set to zero, and the upper bits, if any, are set to a copy of the
most-significant bit in the copied field.

Table C3-71 shows the Bitfield move instructions.

C3.5.8 Bitfield insert and extract

The Bitfield insert and extract instructions are implemented as aliases of the Bitfield move instructions. Table C3-72
shows the Bitfield insert and extract aliases.

Table C3-70 PC-relative address calculation instructions

Mnemonic Instruction See

ADRP Compute address of 4KB page at a PC-relative offset ADRP

ADR Compute address of label at a PC-relative offset. ADR

Table C3-71 Bitfield move instructions

Mnemonic Instruction See

BFM Bitfield move BFM

SBFM Signed bitfield move SBFM

UBFM Unsigned bitfield move (32-bit) UBFM

Table C3-72 Bitfield insert and extract instructions

Mnemonic Instruction See

BFC Bitfield clear BFC

BFI Bitfield insert BFI

BFXIL Bitfield extract and insert low BFXIL

SBFIZ Signed bitfield insert in zero SBFIZ

SBFX Signed bitfield extract SBFX

UBFIZ Unsigned bitfield insert in zero UBFIZ

UBFX Unsigned bitfield extract UBFX

A64 Instruction Set Overview
C3.5 Data processing - immediate

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-395
ID032224 Non-Confidential

C3.5.9 Extract register

Depending on the register width of the operands, the Extract register instruction copies a 32-bit or 64-bit field from
a constant bit position within a double-width value formed by the concatenation of a pair of source registers to a
destination register.

Table C3-73 shows the Extract (immediate) instructions.

C3.5.10 Shift (immediate)

Shifts and rotates by a constant amount are implemented as aliases of the Bitfield move or Extract register
instructions. The shift or rotate amount must be in the range 0 to one less than the register width of the instruction,
inclusive.

Table C3-74 shows the aliases that can be used as immediate shift and rotate instructions.

C3.5.11 Sign-extend and Zero-extend

The Sign-extend and Zero-extend instructions are implemented as aliases of the Bitfield move instructions.

Table C3-75 shows the aliases that can be used as zero-extend and sign-extend instructions.

Table C3-73 Extract register instructions

Mnemonic Instruction See

EXTR Extract register from pair EXTR

Table C3-74 Aliases for immediate shift and rotate instructions

Mnemonic Instruction See

ASR Arithmetic shift right ASR (immediate)

LSL Logical shift left LSL (immediate)

LSR Logical shift right LSR (immediate)

ROR Rotate right ROR (immediate)

Table C3-75 Zero-extend and sign-extend instructions

Mnemonic Instruction See

SXTB Sign-extend byte SXTB

SXTH Sign-extend halfword SXTH

SXTW Sign-extend word SXTW

UXTB Unsigned extend byte UXTB

UXTH Unsigned extend halfword UXTH

A64 Instruction Set Overview
C3.6 Data processing - register

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-396
ID032224 Non-Confidential

C3.6 Data processing - register

This section describes the instruction groups for data processing with all register operands. It contains the following
subsections:

• Arithmetic (shifted register).

• Arithmetic (extended register).

• Arithmetic with carry.

• Integer maximum and minimum (register)

• Flag manipulation instructions.

• Logical (shifted register).

• Move (register).

• Absolute value

• Shift (register).

• Multiply and divide.

• CRC32.

• Bit operation.

• Conditional select.

• Conditional comparison.

For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Register.

C3.6.1 Arithmetic (shifted register)

The Arithmetic (shifted register) instructions apply an optional shift operator to the second source register value
before performing the arithmetic operation. The register width of the instruction controls whether the new bits are
fed into the intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, and LSR accept an immediate shift amount in the range 0 to one less than the register
width of the instruction, inclusive.

Omitting the shift operator implies LSL #0, which means that there is no shift. A disassembler must not output
LSL #0. However, a disassembler must output all other shifts by zero.

The current stack pointer, SP or WSP, cannot be used with this class of instructions. See Arithmetic (extended
register) for arithmetic instructions that can operate on the current stack pointer.

Table C3-76 shows the Arithmetic (shifted register) instructions.

Table C3-76 Arithmetic (shifted register) instructions

Mnemonic Instruction See

ADD Add ADD (shifted register)

ADDS Add and set flags ADDS (shifted register)

SUB Subtract SUB (shifted register)

SUBS Subtract and set flags SUBS (shifted register)

CMN Compare negative CMN (shifted register)

A64 Instruction Set Overview
C3.6 Data processing - register

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-397
ID032224 Non-Confidential

C3.6.2 Arithmetic (extended register)

The extended register instructions provide an optional sign-extension or zero-extension of a portion of the second
source register value, followed by an optional left shift by a constant amount of 1-4, inclusive.

The extended shift is described by the mandatory extend operator SXTB, SXTH, SXTW, UXTB, UXTH, or UXTW. This is
followed by an optional left shift amount. If the shift amount is not specified, the default shift amount is zero. A
disassembler must not output a shift amount of zero.

For 64-bit instruction forms, the additional operators UXTX and SXTX use all 64 bits of the second source register with
an optional shift. In that case, Arm recommends UXTX as the operator. If and only if at least one register is SP, Arm
recommends use of the LSL operator name, rather than UXTX, and when the shift amount is also zero then both the
operator and the shift amount can be omitted. UXTW and SXTW both use all 32 bits of the second source register with
an optional shift. In that case Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm
recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

For 32-bit instruction forms, the operators UXTW and SXTW both use all 32 bits of the second source register with an
optional shift. In that case, Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm
recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

The non-flag setting variants of the extended register instruction permit the use of the current stack pointer as either
the destination register and the first source register. The flag setting variants only permit the stack pointer to be used
as the first source register.

In the 64-bit form of these instructions, the final register operand is written as Wm for all except the UXTX/LSL and SXTX
extend operators. For example:

CMP X4, W5, SXTW
ADD X1, X2, W3, UXTB #2
SUB SP, SP, X1 // SUB SP, SP, X1, UXTX #0

Table C3-77 shows the Arithmetic (extended register) instructions.

CMP Compare CMP (shifted register)

NEG Negate NEG (shifted register)

NEGS Negate and set flags NEGS

Table C3-76 Arithmetic (shifted register) instructions (continued)

Mnemonic Instruction See

Table C3-77 Arithmetic (extended register) instructions

Mnemonic Instruction See

ADD Add ADD (extended register)

ADDS Add and set flags ADDS (extended register)

SUB Subtract SUB (extended register)

SUBS Subtract and set flags SUBS (extended register)

CMN Compare negative CMN (extended register)

CMP Compare CMP (extended register)

A64 Instruction Set Overview
C3.6 Data processing - register

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-398
ID032224 Non-Confidential

C3.6.3 Arithmetic with carry

The Arithmetic with carry instructions accept two source registers, with the carry flag as an additional input to the
calculation. They do not support shifting of the second source register.

Table C3-78 shows the Arithmetic with carry instructions

C3.6.4 Integer maximum and minimum (register)

The Integer maximum and minimum (register) instructions determine the maximum/minimum of the two source
register values.

These instructions are only present when FEAT_CSSC is implemented.

Table C3-79 shows the Integer maximum and minimum (register) instructions.

C3.6.5 Flag manipulation instructions

The Flag manipulation instructions set the value of the NZCV condition flags directly.

The instructions SETF8 and SETF16 accept one source register and set the NZV condition flags based on the value of
the input register. The instruction RMIF accepts one source register and two immediate values, rotating the first
source register using the first immediate value and setting the NZCV condition flags masked by the second
immediate value.

The instructions XAFLAG and AXFLAG convert PSTATE condition flags between the FCMP instruction format and an
alternative format. See Table C6-1 for more information.

Table C3-78 Arithmetic with carry instructions

Mnemonic Instruction See

ADC Add with carry ADC

ADCS Add with carry and set flags ADCS

SBC Subtract with carry SBC

SBCS Subtract with carry and set flags SBCS

NGC Negate with carry NGC

NGCS Negate with carry and set flags NGCS

Table C3-79 Integer maximum and minimum (register) instructions

Mnemonic Instruction See

SMAX Signed Maximum (register) SMAX (register)

SMIN Signed Minimum (register) SMIN (register)

UMAX Unsigned Maximum (register) UMAX (register)

UMIN Unsigned Minimum (register) UMIN (register)

A64 Instruction Set Overview
C3.6 Data processing - register

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-399
ID032224 Non-Confidential

Table C3-80 shows the Flag manipulation instructions.

C3.6.6 Logical (shifted register)

The Logical (shifted register) instructions apply an optional shift operator to the second source register value before
performing the main operation. The register width of the instruction controls whether the new bits are fed into the
intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, LSR, and ROR accept a constant immediate shift amount in the range 0 to one less than
the register width of the instruction, inclusive.

Omitting the shift operator and amount implies LSL #0, which means that there is no shift. A disassembler must not
output LSL #0. However, a disassembler must output all other shifts by zero.

Note

Apart from ANDS, TST, and BICS, the logical instructions do not set the Condition flags, but the final result of a bit
operation can usually directly control a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-81 shows the Logical (shifted register) instructions.

Table C3-80 Flag manipulation instructions

Mnemonic Instruction See

AXFLAG Convert from FCMP comparison format to the alternative format AXFLAG

CFINV Invert value of the PSTATE.C bit CFINV

RMIF Rotate, mask insert flags RMIF

SETF8 Evaluation of 8-bit flags SETF8, SETF16

SETF16 Evaluation of 16-bit flags SETF8, SETF16

XAFLAG Convert from alternative format to FCMP comparison format XAFLAG

Table C3-81 Logical (shifted register) instructions

Mnemonic Instruction See

AND Bitwise AND AND (shifted register)

ANDS Bitwise AND and set flags ANDS (shifted register)

BIC Bitwise bit clear BIC (shifted register)

BICS Bitwise bit clear and set flags BICS (shifted register)

EON Bitwise exclusive-OR NOT EON (shifted register)

EOR Bitwise exclusive-OR EOR (shifted register)

ORR Bitwise inclusive OR ORR (shifted register)

MVN Bitwise NOT MVN

ORN Bitwise inclusive OR NOT ORN (shifted register)

TST Test bits TST (shifted register)

A64 Instruction Set Overview
C3.6 Data processing - register

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-400
ID032224 Non-Confidential

C3.6.7 Move (register)

The Move (register) instructions are aliases for other data processing instructions. They copy a value from a
general-purpose register to another general-purpose register or the current stack pointer, or from the current stack
pointer to a general-purpose register.

C3.6.8 Absolute value

The Absolute value instruction is only present when FEAT_CSSC is implemented.

Table C3-83 shows the Absolute value instruction.

C3.6.9 Shift (register)

In the Shift (register) instructions, the shift amount is the positive value in the second source register modulo the
register size. The register width of the instruction controls whether the new bits are fed into the result on a right shift
or rotate at bit[63] or bit[31].

Table C3-84 shows the Shift (register) instructions.

However, the Shift (register) instructions have a preferred set of aliases that match the shift immediate aliases
described in Shift (immediate).

Table C3-85 shows the aliases for Shift (register) instructions.

Table C3-82 MOV register instructions

Mnemonic Instruction See

MOV Move register MOV (register)

Move register to SP or move SP to register MOV (to/from SP)

Table C3-83 Absolute value instruction

Mnemonic Instruction See

ABS Absolute value ABS

Table C3-84 Shift (register) instructions

Mnemonic Instruction See

ASRV Arithmetic shift right variable ASRV

LSLV Logical shift left variable LSLV

LSRV Logical shift right variable LSRV

RORV Rotate right variable RORV

Table C3-85 Aliases for Variable shift instructions

Mnemonic Instruction See

ASR Arithmetic shift right ASR (register)

A64 Instruction Set Overview
C3.6 Data processing - register

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-401
ID032224 Non-Confidential

C3.6.10 Multiply and divide

This section describes the instructions used for integer multiplication and division. It contains the following
subsections:

• Multiply.

• Divide.

C3.6.10.1 Multiply

The Multiply instructions write to a single 32-bit or 64-bit destination register, and are built around the fundamental
four operand multiply-add and multiply-subtract operation, together with 32-bit to 64-bit widening variants. A
64-bit to 128-bit widening multiple can be constructed with two instructions, using SMULH or UMULH to generate the
upper 64 bits. Table C3-86 shows the Multiply instructions.

C3.6.10.2 Divide

The Divide instructions compute the quotient of a division, rounded towards zero. The remainder can then be
computed as (numerator - (quotient × denominator)), using the MSUB instruction.

LSL Logical shift left LSL (register)

LSR Logical shift right LSR (register)

ROR Rotate right ROR (register)

Table C3-85 Aliases for Variable shift instructions (continued)

Mnemonic Instruction See

Table C3-86 Multiply integer instructions

Mnemonic Instruction See

MADD Multiply-add MADD

MSUB Multiply-subtract MSUB

MNEG Multiply-negate MNEG

MUL Multiply MUL

SMADDL Signed multiply-add long SMADDL

SMSUBL Signed multiply-subtract long SMSUBL

SMNEGL Signed multiply-negate long SMNEGL

SMULL Signed multiply long SMULL

SMULH Signed multiply high SMULH

UMADDL Unsigned multiply-add long UMADDL

UMSUBL Unsigned multiply-subtract long UMSUBL

UMNEGL Unsigned multiply-negate long UMNEGL

UMULL Unsigned multiply long UMULL

UMULH Unsigned multiply high UMULH

A64 Instruction Set Overview
C3.6 Data processing - register

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-402
ID032224 Non-Confidential

If a signed integer division (INT_MIN / -1) is performed where INT_MIN is the most negative integer value
representable in the selected register size, then the result overflows the signed integer range. No indication of this
overflow is produced and the result that is written to the destination register is INT_MIN.

A division by zero results in a zero being written to the destination register, without any indication that the division
by zero occurred.

Table C3-87 shows the Divide instructions.

C3.6.11 CRC32

The CRC32 instructions operate on the general-purpose register file to update a 32-bit CRC value from an input value
comprising 1, 2, 4, or 8 bytes. There are two different classes of CRC instructions, CRC32, and CRC32C, that support two
commonly used 32-bit polynomials, known as CRC-32 and CRC-32C.

To fit with common usage, the bit order of the values is reversed as part of the operation.

When bits[19:16] of ID_AA64ISAR0_EL1 are set to 0b0001, the CRC instructions are implemented.

These instructions are optional in an Armv8.0 implementation.

All implementations of Armv8.1 architecture and later are required to implement the CRC32 instructions.

Table C3-88 shows the CRC instructions.

C3.6.12 Bit operation

The CNT and CTZ instructions are only present when FEAT_CSSC is implemented.

Table C3-87 Divide instructions

Mnemonic Instruction See

SDIV Signed divide SDIV

UDIV Unsigned divide UDIV

Table C3-88 CRC32 instructions

Mnemonic Instruction See

CRC32B CRC-32 sum from byte CRC32B, CRC32H, CRC32W, CRC32X

CRC32H CRC-32 sum from halfword CRC32B, CRC32H, CRC32W, CRC32X

CRC32W CRC-32 sum from word CRC32B, CRC32H, CRC32W, CRC32X

CRC32X CRC-32 sum from doubleword CRC32B, CRC32H, CRC32W, CRC32X

CRC32CB CRC-32C sum from byte CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32CH CRC-32C sum from halfword CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32CW CRC-32C sum from word CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32CX CRC-32C sum from doubleword CRC32CB, CRC32CH, CRC32CW, CRC32CX

A64 Instruction Set Overview
C3.6 Data processing - register

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-403
ID032224 Non-Confidential

Table C3-89 shows the Bit operation instructions.

C3.6.13 Conditional select

The Conditional select instructions select between the first or second source register, depending on the current state
of the Condition flags. When the named condition is true, the first source register is selected and its value is copied
without modification to the destination register. When the condition is false the second source register is selected
and its value might be optionally inverted, negated, or incremented by one, before writing to the destination register.

Other useful conditional set and conditional unary operations are implemented as aliases of the four Conditional
select instructions.

Table C3-90 shows the Conditional select instructions.

C3.6.14 Conditional comparison

The Conditional comparison instructions provide a conditional select for the NZCV Condition flags, setting the
flags to the result of an arithmetic comparison of its two source register values if the named input condition is true,
or to an immediate value if the input condition is false. There are register and immediate forms. The immediate form
compares the source register to a small 5-bit unsigned value.

Table C3-89 Bit operation instructions

Mnemonic Instruction See

CLS Count leading sign bits CLS

CLZ Count leading zero bits CLZ

CNT Count bits CNT

CTZ Count trailing zero bits CTZ

RBIT Reverse bit order RBIT

REV Reverse bytes in register REV

REV16 Reverse bytes in halfwords REV16

REV32 Reverse bytes in words REV32

REV64 Reverse bytes in register REV64

Table C3-90 Conditional select instructions

Mnemonic Instruction See

CSEL Conditional select CSEL

CSINC Conditional select increment CSINC

CSINV Conditional select inversion CSINV

CSNEG Conditional select negation CSNEG

CSET Conditional set CSET

CSETM Conditional set mask CSETM

CINC Conditional increment CINC

CINV Conditional invert CINV

CNEG Conditional negate CNEG

A64 Instruction Set Overview
C3.6 Data processing - register

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-404
ID032224 Non-Confidential

Table C3-91 shows the Conditional comparison instructions.

Table C3-91 Conditional comparison instructions

Mnemonic Instruction See

CCMN Conditional compare negative (register) CCMN (register)

CCMN Conditional compare negative (immediate) CCMN (immediate)

CCMP Conditional compare (register) CCMP (register)

CCMP Conditional compare (immediate) CCMP (immediate)

